Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136720

RESUMO

Surface-active compounds (SACs) of microbial origin are an active group of biomolecules with potential use in the formulation of emulsions. In this sense, the present study aimed to isolate and select yeasts from fruits that could produce SACs for essential oil emulsions. The Candida krusei M4CK was isolated from the Byrsonima crassifolia fruit to make SACs. This emulsification activity (E24) was equal to or greater 50% in all carbon sources, such as olive oil, sunflower oil, kerosene, hexane, and hexadecane. E24 followed exponential growth according to the growth phase. The stability of emulsions was maintained over a wide range of temperatures, pH, and salinity. The OMBE4CK (melaleuca essential oil emulsion) had better and more significant inhibitory potential for biofilm reduction formation. In addition, bioemulsifier BE4CK alone on Escherichia coli and Pseudomonas aeruginosa biofilm showed few effective results, while there was a significant eradication for Staphylococcus aureus biofilms. The biofilms formed by S. aureus were eradicated in all concentrations of OMBE4CK. At the same time, the preformed biofilm by E. coli and P. aeruginosa were removed entirely at concentrations of 25 mg/mL, 12.5 mg/mL, and 6.25 mg/mL. The results show that the bioemulsifier BE4CK may represent a new potential for antibiofilm application.

2.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37631027

RESUMO

This study aimed to evaluate the potential of lactic acid bacteria (LAB) in developing alginate-based gel formulations to inhibit Staphylococcus aureus. Initially, the antagonistic actions of three lactic acid bacteria (LAB) (Lacticaseibacillus rhamnosus ATCC 10863, Lactiplantibacillus plantarum ATCC 14917, Limosilactobacillus fermentum ATCC 23271) were evaluated against S. aureus ATCC 25923. All tested LAB inhibited S. aureus, but the highest activity was observed for L. plantarum ATCC 14917 (p < 0.05). The antimicrobial effects of L. plantarum ATCC 14917 cell suspensions, sonicate cells extract, and cell-free supernatants (pH 5 or 7) were analyzed using a broth-based assay. The cell suspensions inhibited S. aureus at concentrations ≥ 10%, and these effects were confirmed by a time-kill assay. Alginate-based gels were formulated with cell suspensions, sonicate cells extract, and cell-free supernatant (pH 5). These formulations inhibited S. aureus growth. Based on the results, the alginate gel with cell suspensions at 10% was selected for further characterization. L. plantarum ATCC 14917 survived in the alginate-based gel, especially when stored at 5 °C. At this temperature, the L. plantarum-containing alginate gel was stable, and it was in compliance with microbiological standards. These findings suggest it can be a promising agent for the topical treatment of infections induced by S. aureus.

3.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986568

RESUMO

This study aimed to develop a hydroxyethyl cellulose-based topical formulation containing probiotics and to evaluate its antimicrobial action using in vivo and ex vivo models. Initially, the antagonistic effects of Lacticaseibacillus rhamnosus ATCC 10863, Limosilactobacillus fermentum ATCC 23271, Lactiplantibacillus plantarum ATCC 8014 and Lactiplantibacillus plantarum LP-G18-A11 were analyzed against Enterococcus faecalis ATCC 29212, Klebsiella pneumoniae ATCC 700603, Staphylococcus aureus ATCC 27853 and Pseudomonas aeruginosa ATCC 2785. The best action was seen for L. plantarum LP-G18-A11, which presented high inhibition against S. aureus and P. aeruginosa. Then, lactobacilli strains were incorporated into hydroxyethyl cellulose-based gels (natrosol); however, only the LP-G18-A11-incorporated gels (5% and 3%) showed antimicrobial effects. The LP-G18-A11 gel (5%) maintained its antimicrobial effects and viability up to 14 and 90 days at 25 °C and 4 °C, respectively. In the ex vivo assay using porcine skin, the LP-G18-A11 gel (5%) significantly reduced the skin loads of S. aureus and P. aeruginosa after 24 h, while only P. aeruginosa was reduced after 72 h. Moreover, the LP-G18-A11 gel (5%) showed stability in the preliminary and accelerated assays. Taken together, the results show the antimicrobial potential of L. plantarum LP-G18-A11, which may be applied in the development of new dressings for the treatment of infected wounds.

4.
Rev. bras. anal. clin ; 54(1): 50-54, 20220330.
Artigo em Português | LILACS | ID: biblio-1395668

RESUMO

Serratia marcescens pertence à Família Enterobacteriaceae, é Gram-negativa e anaeróbica facultativa, sendo bem distribuída na natureza; pode ser isolada como saprófita do solo e da água. Possui um significado clínico relevante, pois acarreta infecções nosocomiais e pulmonares em determinados setores da saúde, como unidades neonatais, maternidades e UTIs, além de sepse, meningite, choque endotóxico e infecções do trato urinário. O intuito desse estudo foi analisar o mecanismo de heterorresistência em linhagens sensíveis de Serratia marcescens diante das concentrações testadas de meropeném. As linhagens SR1 e SR2 apresentaram perfil heterorresistente, ao passo que a SR6 demonstrou ser não heterorresistente, com CIM elevado (32µg/mL). Os isolados de Serratia marcescens são suscetíveis ao meropenem, por testes de sensibilidade padrão, mas contêm subpopulações resistentes ao mesmo.


Serratia marcescens belongs to the Enterobacteriaceae family, it is optional anaerobic gram-negative, being well distributed in nature and it might be isolated as saprophytic from soil and water. It has a meaningful clinical significance, because it causes nosocomial and lung infections in certain healthcare sectors, such as neonatal units, maternity units and UTIs; septicemia, meningitis, endotoxin shock and urinary tract infections. The aim of this study was to analyze the mechanism of heteroresistance in susceptible strains of Serratia marcescens in the presence of the tested concentration of meropenem. The lineages SR1 and SR2 presented heteroresistant profile, while the SR6 showed to be nonheterorresistente, with CIM (32 µg/mL). The Isolates of Serratia marcescens are susceptible to meropenem, by standard sensitivity testing, but there are subpopulations resistant to it.


Assuntos
Infecções por Serratia , Farmacorresistência Bacteriana , Enterobacteriáceas Resistentes a Carbapenêmicos , Serratia marcescens , Enterobacteriaceae , Meropeném , Bactérias Gram-Negativas
5.
Pathogens ; 10(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540588

RESUMO

The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections.

6.
Molecules ; 22(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561790

RESUMO

Plant-derived products have played a fundamental role in the development of new therapeutic agents. This study aimed to analyze antimicrobial, antibiofilm, cytotoxicity and antiproliferative potentials of the extract and fractions from leaves of Himatanthusdrasticus, a plant from the Apocynaceae family. After harvesting, H. drasticus leaves were macerated and a hydroalcoholic extract (HDHE) and fractions were prepared. Antimicrobial tests, such as agar-diffusion, Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were carried out against several bacterial species. Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes and Klebsiella pneumoniae were inhibited by at least one extract or fraction in the agar-diffusion assay (inhibition halos from 12 mm to 30 mm). However, the lowest MIC value was found for HDHE against K. pneumoniae. In addition, HDHE and its fractions were able to inhibit biofilm formation at sub-inhibitory concentrations (780 µg/mL and 1.56 µg/mL). As the best activities were found for HDHE, we selected it for further assays. HDHE was able to increase ciprofloxacin (CIP) activity against K. pneumoniae, displaying synergistic (initial concentration CIP + HDHE: 2 µg/mL + 600 µg/mL and 2.5 µg/mL + 500 µg/mL) and additive effects (CIP + HDHE: 3 µg/mL + 400 µg/mL). This action seems to be associated with the alteration in bacterial membrane permeability induced by HDHE (as seen by propidium iodide labeling). This extract was non-toxic for red blood cell or human peripheral blood mononuclear cells (PBMCs). Additionally, it inhibited the lipopolysaccharide-induced proliferation of PBMCs. The following compounds were detected in HDHE using HPLC-ESI-MS analysis: plumieride, plumericin or isoplumericin, rutin, quercetin and derivatives, and chlorogenic acid. Based on these results we suggest that compounds from H. drasticus have antimicrobial and antibiofilm activities against K. pneumoniae and display low cytotoxicity and anti-proliferative action in PBMC stimulated with lipopolysaccharide.


Assuntos
Anti-Infecciosos/química , Apocynaceae/química , Biofilmes/efeitos dos fármacos , Flavonoides/química , Furanos/química , Iridoides/química , Folhas de Planta/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Biofilmes/crescimento & desenvolvimento , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciprofloxacina/farmacologia , Combinação de Medicamentos , Sinergismo Farmacológico , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Furanos/isolamento & purificação , Furanos/farmacologia , Iridoides/isolamento & purificação , Iridoides/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/fisiologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/fisiologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
7.
Front Microbiol ; 8: 595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443078

RESUMO

Terminalia catappa Linn bark is used to treat dysentery by various populations in Southeast Asian countries, and its leaves have also been used in traditional medicine to treat hepatitis in India and the Philippines. Here, the antifungal actions of crude hydro-alcoholic extract (TcHE) and fractions from T. catappa leaves were assessed via the agar diffusion and microdilution tests on Candida reference strains and clinical isolates from patients with acquired immunodeficiency syndrome (AIDS). Additionally, the potential cytotoxic effects of TcHE were assessed on cultured human peripheral blood mononuclear cells (PBMC). T. catappa fractions and sub-fractions were analyzed by gas chromatography coupled to mass spectrometry with electron impact (GC/MS/EI), high-performance liquid chromatography coupled to mass spectrometry "electrospray" ionization in positive mode (HPLC/MS/MS/ESI+) and hydrogen nuclear magnetic resonance (1HNMR). TcHE and its fractions were able to inhibit the growth of all tested Candida strains with the n-butanol (FBuOH) fraction presenting the best antifungal activity. Testing of different FBuOH sub-fractions (SF) showed that SF10 was the most active against Candida spp. Fractioning of SF10 demonstrated that 5 out of its 15 sub-fractions were active against Candida spp., with SF10.5 presenting the highest activity. Chemical analysis of SF10 detected hydrolysable tannins (punicalin, punicalagin), gallic acid and flavonoid C-glycosides. Overall, the results showed that T. catappa L. leaf extract, fractions and sub-fractions were antifungal against Candida spp. and may be useful to treat diseases caused by this fungus.

9.
J Hazard Mater ; 161(2-3): 1413-20, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18541369

RESUMO

The degradation of phenol (2-30 mM) by free cells and by alginate-immobilized cells of Aureobasidium pullulans FE13 isolated from stainless steel effluents was studied in batch cultures with saline solution not supplemented with nutrients or yeast extract. The rate at which the immobilized cells degrade phenol was similar to the rate at which the suspended cells could degrade phenol, for a concentration of up to 16 mM of phenol. The maximum phenol volumetric degradation rate for 16 mM phenol was found to be 18.35 mg l(-1)h(-1) in the assays with free cells and 20.45 mg l(-1)h(-1) in the assays with alginate-immobilized cells, 18 mM phenol and cellular concentration of 0.176 g/l. At concentrations higher than this, an inhibitory effect was observed, resulting in the lowering of the phenol degradation rates. The immobilization was detrimental to the catechol 1,2-dioxygenase activity. However, the immobilized cells remained viable for a longer period, increasing the efficiency of phenol degradation. The yeast showed catechol 1,2-dioxygenase activity only after growth in the phenol, which was induced at phenol concentrations as low as 0.05 mM and up to 25 mM at 45 h of incubation at 30 degrees C. Phenol concentrations higher than 6mM were inhibitory to the enzyme. Addition of glucose, lactate, succinate, and benzoate reduced the rate at which phenol is consumed by cells. Our results suggest that inoculants based on immobilized cells of A. pullulans FE13 has potential application in the biodegradation of phenol and possibly in the degradation of other related aromatic compounds.


Assuntos
Ascomicetos/metabolismo , Fenol/química , Adsorção , Biodegradação Ambiental , Carbono/química , Catecol 1,2-Dioxigenase/química , Desinfetantes , Relação Dose-Resposta a Droga , Composição de Medicamentos , Sais/química , Aço Inoxidável , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...